
NATL INST. OF STAND & TECH I

Comparing Remote
Procedure Calls

i

k

5

John Barkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

oc

100

.056

NO. 5277

1993

NIST

. 1 IWl'





Comparing Remote
Procedure Calls

John Barkley

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Gaithersburg, MD 20899

October 1993

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director



'i

/



Abstract

Almost all computer systems are connected to a network supporting data communica-
tions. As a result, many techniques have evolved to support the development of applications

which require processes on different systems to communicate and coordinate their activities.

One such technique is remote procedure call (RPC). RPC is a mature method with several

specifications and implementations. Among these are: Open Network Computing (ONC)
RPC, Distributed Computing Environment (DCE) RPC, and the RPC specification from

the International Organization for Standardization (ISO).

This report describes the RPC concept, how this concept is commonly implemented, and

compares the features and capabilities of these three RPCs. The RPC language, semantics,

and protocol of ONC RPC, DCE RPC, and ISO RPC are compared. Since ONC RPC
and DCE RPC have implementations, the output of their RPC language compiler and the

support provided by their runtime libraries are also compared.



IV



Contents

1 Introduction 1

2 The RPC Model 1

3 RPC Implementation 3

3.1 Call Semantics 4

3.1.1 Idempotent 5

3.1.2 At-most-once 5

3.2 Variations on Call/Response Behavior 5

3.2.1 Broadcast 5

3.2.2 No-response 6

4 Portability and Interoperability of RPC Applications 6

5 ONC RPC 7

5.1 Language and Semantics 7

5.2 Language Compiler 9

5.3 Server Runtime Support 9

5.4 Protocol 10

6 DCE RPC 10

6.1 Language and Semantics 11

6.2 Language Compiler 11

6.3 Server Runtime Support 12

6.4 Protocol 13

7 ISO RPC 13

7.1 Language and Semantics 14

7.2 Protocol 14

8 Summary 15

References 16

V



List of Tables

1 Comparison of ONC, DCE, and ISO RPCs 15

List of Figures

1 RPC Model 3

2 The procedure binop-add 4

3 Binary addition example in RPC Language 8

4 Binary addition example in IDL 12

5 Binary addition example in IDN 14

/

VI



1 Introduction

The Remote Procedure Call (RPC) concept is a simple and useful technique for developing

applications where communication between cooperating processes on networked systems is

required. RPC is a mature technique as evidenced by the existence of several RPC specifi-

cations and implementations^.

This report describes and compares three significant RPCs:

• Open Network Computing (ONC) RPC from Sun Microsystems[SUN90][MS91].

• Distributed Computing Environment (DCE) RPC from the Open Software Foundation

(0SF)[DCE91].

• The RPC specification from the International Organization for

Standardization (IS0)[IS091].

The criteria used for comparison is necessarily limited in scope because of the resources

available to do the study. The author has experience in the development of applications

using ONC RPC. While an implementation of DCE RPC was available, it was not possible

to make use of the implementation because of limited resources. No implementation of ISO

RPC is available. Nonetheless, the information presented in this report is significant for the

task of choosing which RPC should be used in a given circumstance.

Section 1 is this introduction. Section 2 describes the RPC model, presents the RPC
concept, and establishes some terminology. Section 3 discusses methods of implementing

the RPC concept and presents further terminology used in the report. Sections 5, 6, and

7 describe features and capabilities of ONC RPC, DCE RPC, and ISO RPC respectively.

Section 8 presents a table of comparison between the three RPCs which highlights significant

similarities and differences.

2 The RPC Model

The RPC model describes how cooperating processes on different network nodes can com-

municate and coordinate activities. The paradigm of RPC is based on the concept of a

procedure call in a programming language. The semantics of RPC are almost identical to

the semantics of the traditional procedure call. The major difference is that while a normal

procedure call takes place between procedures of a single process in the same memory space

on a single system, RPC takes place between a client process on one system and a server

process on another system where both the client system and the server system are connected

to a network.

^Because of the nature of this report, it is necessary to mention vendors and commercial products.

The presence or absence of a particular trade name product does not imply criticism or endorsement by the

National Institute of Standards and Technology, nor does it imply that the products identified are necessarily

the best available.

1



There are several representations of the original RPC model[BAD 84], Each of the ref-

erences [SUN90], [DCE91], and [IS091] presents a variation on the original suitable for the

exposition of their RPCs. The RPC model of Figure 1 has been designed to illustrate the

points of comparison used in this report.

Figure 1 illustrates the basic operation of RPC. A client application issues a normal

procedure call to a client stub. The client stub receives arguments from the calling pro-

cedure and returns arguments to the calling procedure. An argument may instantiate an

input parameter, an output parameter, or an input/output parameter. In the discussion of

this Section, the term input argument refers to a parameter which may be either an input

parameter or an input/output parameter, and the term output argument refers to either an

output parameter or an input/output parameter.

The client stub converts the input arguments from the local data representation to a com-

mon data representation, creates a message containing the input arguments in their common
data representation, and calls the client runtime, usually an object library of routines that

supports the functioning of the client stub. The client runtime transmits the message with

the input arguments to the server runtime which is usually an object library that supports

the functioning of the server stub. The server runtime issues a call to the server stub which

takes the input arguments from the message, converts them from the common data represen-

tation to the local data representation of the server, and calls the server application which

does the processing.

When the server application has completed, it returns to the server stub the results of the

processing in the output arguments. The server stub converts the output arguments from the

data representation of the server to the common data representation for transmission on the

network and encapsulates the output arguments into a message which is passed to the server

runtime. The server runtime transmits the message to the client runtime which passes the

message to the client stub. Finally, the client stub extracts the arguments from the message

and returns them to the calling procedure in the required local data representation.

Like a normal procedure call, RPC is a synchronous operation, i.e., the client process is

blocked until processing by the server is complete. This is not acceptable for many applica-

tions. As a consequence, the RPC model is enhanced to include the concept of a lightweight

process. A lightweight process (also known as a thread) is an independent execution path

within a normal process. A normal process can consist of several lightweight processes, each

behaving like a normal process from the point of view of CPU use. However, all lightweight

processes of the same process share the same address space. Thus, context switches between

lightweight processes may be done more economically than context switches between normal

processes.

In order to achieve asynchronous operation, a client application initiates an RPC call in a

lightweight process and then proceeds with other processing. The application can recognize

the completion of the RPC by some technique such as a status check or a software interrupt.

Note that, unlike the model presented here, some RPC models do not explicitly deal

with the problem of systems which have different data representations. However, almost all

implementations provide a mechanism to solve the problem of different data representations.

2



Client Server
s \

Client Application Server Application

Cc ret im

return > call 1

client server

stub stub

f
cbII

'
1
return

return i

, 1

call

client server

runtime 1

return parameters
1 runtime

L 1 Network i J
v J ]

call parameters
1 V J

\

Figure 1; RPC Model

Usually, this mechanism is based on the use of a common data representation.

3 RPC Implementation

An implementation of the RPC model usually consists of at least three elements, a language

compiler, a client runtime library, and a server runtime library. The language compiler

produces suitable client and server stubs from a program written in an RPC language which

is usually a non-procedural language providing the capability of declaring remote procedures

and their parameters. In conjunction with the client and server applications, the client and

server stubs are compiled by a procedure language compiler, such as C, producing object

files which are linked to the client and server runtime libraries. This process produces an

executable client and an executable server.

The client and server runtime libraries are called by the client and server stubs respec-

tively. These object runtime libraries contain the routines for performing conversion between

the local data representations and the common data representation, for creating the network

message formats, and for the transmission of these messages between client and server ac-

cording to user-specified protocols.

With such an implementation, the developer of an RPC application is required to produce

the following:

3



long binop_add(a,b)

long a,b;

{

return(a + b)

;

}

Figure 2: The procedure hinop.add

• The RPC language program for the RPC language compiler.

• The client application which calls the client stub.

• The server application which is called by the server stub.

In this report, a binary addition application is used as an example to illustrate these

concepts. Consider a procedure named hinop.add which adds two binary integer numbers.

It has as input parameters two integers a and b. The return value of the procedure is the

sum of a and b. In C, a call to such a procedure is:

c = binop_add(a,b);

In C, the procedure binop-add is implemented as shown in Figure 2. Following traditional

practice, a developer wishing to use the procedure binop^add in an application simply calls

the procedure and that procedure is linked into the application.

The goal of an RPC implementation is to achieve the same effect as the traditional method

of using procedures except that the procedure binop.addis run on a separate system. Ideally,

when binop^add is an RPC, the only additional task required of the developer is to produce

declarations for binop^add and its parameters in the RPC language. The RPC language

compiler generates the client stub which is called by the statement:

c = binop_add(a,b);

In addition, the RPC language compiler produces a server stub which calls the binop^add

procedure in Figure 2. See Figures 3, 4, and 5 for the RPC language needed to define the

6mop_add example for ONC RPC, DCE RPC, and ISO RPC respectively.

3.1 Call Semantics

An RPC implementation may support more than one set of semantics for the RPC call.

Which call semantics are used by a developer depends on the requirements of the application.

The most common call semantics are idempotent and at-most-once.

4

/



3.1.1 Idempotent

Idempotent call semantics are for those RPC applications where no undesirable effects result

from a given RPC call being processed on the server more than once. A client may issue a

given RPC call more than once if the response to the first call is lost in transmission. An
RPC application which maintains state information on a server may be adversely affected by

multiple transmissions of the same RPC call. Idempotent call semantics are used by those

RPC applications which do not maintain state information on the server (e.g., the hinop.add

application) or for those applications which do maintain state information but the server

state is not corrupted by multiple client invocations of the same RPC call. Idempotent call

semantics can be implemented in a very efficient manner.

3.1.2 At-most-once

At-most-once call semantics are for those RPC applications which require a guarantee that

multiple invocations of the same RPC call by a client will not be processed on the server. Such

applications usually maintain state information on the server and more than one invocation

of the same RPC call must be detected in order to avoid corruption of the state information.

An example of such an application is inventory control. Consider several point-of-sale

(PCS) workstations and a server which maintains inventory records. Each PCS workstation

makes an RPC call to the server when an item is sold. The call causes a count of the number

of items left in the inventory to be decremented on the server. If a call indicating that five

of the item X was sold is processed on the server more than once, then the inventory record

for item X will be in error. At-most-once call semantics provide a guarantee that this does

not occur. However, at-most-once semantics exact higher overhead in terms of processing

and network use and should only be used when necessary.

3.2 Variations on Call/Response Behavior

An RPC implementation may support different variations on the simple call/response be-

havior described in Section 2. These variations include broadcast RPC and an RPC for

which no response to the call is required. In this report, an RPC which requires no response

is referred to as a no-response RPC.

3.2.1 Broadcast

A broadcast RPC provides the capability for the application to make calls to more than one

server with a single RPC invocation. For example, an inventory control application, such

as the one described in Section 3.1.2, may be required to send point-of-sale information to

several different servers maintaining inventory records.

5



3.2.2 No-response

The no-response RPC provides the capability for an RPC call to be made for which no

response is returned. An example of such an application is a process that is monitoring some

activity. The monitor process makes RPC calls to a server which maintains a log of the

activity being monitored. The client need not get a response for each event logged.

4 Portability and Interoperability of RPC Applica-

tions

Among other things, information processing standards provide for portability and interop-

erability. The question can be raised with regard to which aspects of the RPC model and/or

implementation are candidates for standardization. Based on the model illustrated in Fig-

ure 1, standard specifications could be developed for an RPC language, an RPC protocol,

and/or client/server runtime libraries. Other aspects of RPC could also be considered for

standardization. Discussion of which aspects of the RPC model and/or implementation

should be standardized is beyond the scope of this report. For the purposes of the com-

parison of ONC RPC, DCE RPC, and ISO RPC, this report adopts the method of RPC
standardization adopted by ISO in their RPC specification.

ISO RPC specifies both an RPC language and an RPC protocol. The specification of both

an RPC language and an RPC protocol avoids the situation where an RPC language program

may be ported to another system but the two systems may not interoperate because the client

and server runtimes do not use the same RPC protocol. It is important to understand that

ISO RPC does not specify a method of implementation. However, it is possible to describe

how portability and interoperability for an RPC application is realized when a developer is

using an RPC specification defined in the manner of ISO RPC and implemented in the usual

technique as described in Section 3.

Portability of RPC applications is achieved at the source code level by means of the RPC
language. Note that when an RPC specification defines only a language and a protocol, it is

not necessary that the client and server stubs (i.e., the output of the RPC language compiler)

be portable. The client and server stubs call routines in client and server runtime libraries

which are likely specific to the system hosting the implementation of the RPC specification.

On another host system, the RPC language compiler for that system generates client and

server stubs suitable for the runtimes libraries of that system. Thus, the client and server

stubs themselves may not be portable between host systems.

Consequently, in order for an RPC application to be portable when an RPC specification

defines only a language and a protocol, it is necessary that the client and server stubs be

complete. In this report, the terms complete client stub and complete server stub refer to the

idea that the client stub and server stub generated by the RPC language compiler need not

be modified by the RPC application developer in order to be integrated with the client and

server applications. If an RPC application developer must modify the output of the RPC
language compiler, then the portability of an RPC application is diminished.

/
6



Interoperability is achieved by means of the RPC protocol. Access to the RPC protocol

is provided to the RPC application by the client and server runtime libraries. Because the

RPC protocol used by an RPC application is part of the RPC standard specification, a client

application on one system interoperates with a server on any other system.

5 ONC RPC
ONC RPC, sometimes referred to as Sun RPC, was one of the first commercial imple-

mentations of RPC. There are basically two implementations of ONC RPC, the original

implementation and a transport independent implementation. The original implementation

of ONC RPC is widely available on almost every system as part of the system’s network

software. In addition, source code for ONC RPC has been available over the Internet since

1988. This source code is readily usable on systems supporting Berkeley Unix libraries and

has been modified for use on other systems.

The more recent implementation of ONC RPC is Transport Independent RPC (TI

RPC)[MS91]. TI RPC is available as part of the Solaris operating system and is not as

widely available outside of the Solaris environment as the original implementation of ONC
RPC. The major difference between the original implementation and TI RPC is the ability

of TI RPC to use different Transport Layer Protocols. TI RPC also provides somewhat more

complete client and server stubs. In this report, discussion of ONC RPC always refers to the

original implementation since this is the one which is so widely available. The differences

between the original implementation and TI RPC do not significantly affect the major points

of comparison as given in Section 8. Where a discussion refers to TI RPC, it is explicitly

identified.

The success of ONC RPC is in some measure related to the widespread use of NFS which

is implemented using ONC RPC. NFS server source code is also available on the Internet.

More importantly, NFS has been implemented in many diverse environments, e.g., IBM
MVS, DEC VMS, and Novell Netware.

5.1 Language and Semantics

ONC RPC supports both at-most-once and idempotent call semantics as well as broadcast

RPC and no-response RPC (referred to as hatching in ONC RPC). In ONC RPC, the lan-

guage use to declare the procedures for client and server is called simply RPC Language^

.

ONC RPC supports three levels of authentication: none (the default), Unix user ID/group

ID, and Secure RPC. Authentication using Unix user IDs and group IDs is well known as a

very weak mechanism. Secure RPC is a very robust authentication mechanism which uses

DES encrypted timestamps to authenticate.

^In this report, the term RPC language with the small “1” is used generically to refer to the input of an

RPC compiler and the term RPC Language with a large “L” is used to refer specifically to the ONC RPC
language.

7



program BINOP {

version BINOP.VERS {

long BIN0P_ADD (struct input_args) = 1;

} = 1 ;

} = 300030;

struct input_args {

long a;

long b;

};

Figure 3: Binary addition example in RPC Language

RPC Language provides support for almost all C language scalar and aggregate data

types. In addition, it supports the data type opaque which permits untranslated data to

pass between client and server.

With regard to procedure declaration, RPC Language is minimal. It only supports the

declaration of procedures with one input parameter and one output parameter. However,

this is a minor limitation. Input parameters may be grouped into a structure that becomes

the single input parameter and output parameters may be grouped into a structure that

becomes the single output parameter.

Client stubs in RPC implemetations typically provide for parameters which are both

input and output. This can be accomplished in an ONC RPC client stub by copying an

input/output parameter of the application procedure call to the input parameter structure

of the RPC call. Upon return, the client stub copies the new value from the output parameter

structure to the input /output parameter of the application procedure call. Unfortunately, the

RPC Language compiler provides no support for this method of implementing input/output

parameters.

Figure 3 shows the RPC language for defining the procedure and data for the binary

addition example. The input parameters a and b have been grouped together into a structure

input^args to provide the single input parameter to the RPC call. The application’s call to

the client stub in C would be:

c = binop_add(a,b);

The client stub prepares the inpuLargs parameter from the a and b parameters of the appli-

cations call to the client stub.

Figure 3 also illustrates how the server procedure is identified in ONC RPC. The program

BINOP is declared to be the number 300030 and the version number (BINOP-VERS) is

declared to be 1. The client stub invokes the procedure on the server by passing to the client

8



runtime services the name of the server, the program number 300030, the version number 1,

the procedure name BINOP-ADD, and the input parameter input^args. Program numbers,

version numbers, and procedure names neither require nor are supported by a name service.

On the other hand, the name of the server requires and is supported by a name service.

5.2 Language Compiler

The RPC Language compiler is called rpcgen. It generates an include file, client stub, server

stub, and a procedure to perform data representation translation of the input parameter and

the output parameter to a common data representation for transmission over the network.

The client stub produced by rpcgen is incomplete. It is not ready to be used by the client

application, i.e., the client stub generated must be enhanced to provide an application call

of the form:

c = binop_add(a,b);

For the simplest cases of RPC applications, e.g., no authentication and idempotent call

semantics, the procedure callrpc() is used to make the call from the client application and

the client stub from rpcgen is unnecessary. In more complicated RPC applications, e.g.,

where the functionality of some kind of authentication and/or at-most-once call semantics

is needed, the client stub needed requires at least twice the number of lines of code as is

generated for the client stub by rpcgen. Again, this extra client stub code must be produced

by the application developer.

On the other hand, the server stub produced by rpcgen is nearly complete for the majority

of RPC applications. In the simplest applications, e.g., no authentication, the server stub is

complete. For a more complicated application, e.g., some level of authentication, only minor

modifications to the server stub must be made.

In addition to the files generated by rpcgen in the original implementation of ONC RPC,
the rpcgen compiler of TI RPC produces a makefile (i.e., an input file to the make processor)

which handles the generation of the client and server executables. Moreover the TI RPC
rpcgen compiler produces a more complete client stub which is referred to as a “template.”

While this template provides considerable help, it must be modified in all cases by the

developer of the RPC application.

5.3 Server Runtime Support

ONC RPC provides some support for concurrent execution of client calls on the server. The

default sequence of events for server execution of a client call is generally as follows. When
a client call arrives at the server, the server runtime support initiates execution of the server

process for that call if the server process is not already processing a previous call. If the

server process is already processing a previous call, then the new call is queued until the

server process completes the previous call. This level of server runtime support is adequate

for simple RPC applications.

9



However, for those applications which require more sophisticated support, ONC RPC
provides the capability for server processes to be used in conjunction with the inetd daemon.

This means that each time a client call arrives at the server, the inetd daemon initiates

execution (using a fork()/exec() mechanism) of a server process for that call instead of

queuing the call until a previous call completes.

5.4 Protocol

For reasons of efficiency, the protocol used for RPC calls in ONC RPC is a simple re-

quest/response protocol. The client sends a request packet to the server, the server processes

the request, and returns a response packet to the client.

On its own, such a protocol is inadequate for supporting at-most-once call semantics.

Even with the use of unique identification numbers on the request and response packets

(called transaction IDs in ONC RPC), the server is unable to know whether the client

received the response packet unless there is some acknowledgement from the client.

ONC RPC solves this problem by relying on the transport layer protocol to provide the

call semantics, i.e., UDP for idempotent calls and TCP for at-most-once calls. In those

applications where idempotent call semantics are sufficient, this approach minimizes the

number of packets on the network and the amount of packet processing by client and server.

However, in those applications where at-most-once call semantics are required, the use of

TCP usually generates more packets and may increase the amount of packet processing as

compared to a more robust RPC protocol. Such a more robust RPC protocol can support

at-most-once call semantics over a connectionless transport protocol such as UDP.
The original implementation of ONC RPC only supported UDP and TCP transport

protocols. The more recent implementation of ONC RPC, TI RPC, provides support for a

larger group of transport protocols including OSI Transport.

In order to solve the problem of different data representations between different sys-

tems, ONC RPC uses a standard data representation for both scaler and aggregate data

types. ONC RPC calls this standard data representation External Data Representation

(XDR)[SUN90, Chapter 5]. The client input parameter is converted to XDR representation.

The server converts the XDR representation of the client input parameter to its local rep-

resentation. Having produced the results of the client request, the server prepares an XDR
representation of the output parameter. The client converts the XDR representation of the

output parameter to its local representation.

6 DCE RPC
DCE RPC is not nearly as widely and easily available as ONC RPC. Although support for

DCE, of which DCE RPC is a part, is claimed by almost all vendors, DCE RPC is a future

product for some vendors. For other vendors, DCE RPC is an option over and above the

normal networking software which usually includes ONC RPC.

/

10



6.1 Language and Semantics

DCE RPC is rich in both language and semantic features. DCE RPC supports both at-

most-once and idempotent call semantics as well as broadcast RPC and no-response RPC
(referred to as maybe in DCE RPC). DCE RPC supports several authentication mechanisms.

The default is Kerberos Version 5 (called DCE shared-secret). Any other authentication

mechanism including no authentication must be specifically requested by the client. The
language of DCE RPC is called Interface Definition Language (IDL). DCE RPC is descended

from Network Computing System (NCS) RPC developed by Apollo and provides conversion

tools to go from NIDL (the NCS language compiler) to IDL.

In its procedure definitions, IDL supports procedure declarations with input (in), output

(out), and input/output (in/out) parameters. IDL also generally supports all of the C lan-

guage data types, the handle.! data type for untranslated data, plus some additional ones.

For example, IDL supports a pipe data type. It is sometimes desirable in an RPC applica-

tion to be able to transfer large amounts of data between client and server. The traditional

means of accomplishing this has been to establish communications channels between client

and server as a result of the RPC call. With ONC RPC, there is no support within RPC
Language for this kind of application. Such communications channels must be programmed

by hand.

For most such applications, the DCE RPC data type pipe provides the capability needed.

A pipe can be an input parameter (a client to server channel), an output parameter (a server

to client channel), or and input/output parameter (a two-way channel between client and

server). The pipe permits the transfer of large amounts of typed data between client and

server. Because the data that passes over a pipe parameter is typed, DCE RPC, by default,

provides the necessary translation between the local representations of the typed data and

the common data representation for transmission over the network. With ONC RPC, such

translation must be programmed using a data translation procedure. The RPC Language

compiler rpcgen may be used to generate such a data translation procedure. Note that a

DCE RPC procedure that has a pipe parameter cannot be idempotent.

Figure 4 shows the IDL for the binary addition example. The call to the client stub in

C from the application program is:

binop_add(h, a, b, &c);

The argument /i is a handle which locates state information that is kept on the client. The

sum is returned by means of a pointer to c.

The uuid, version, and endpoint provide a unique identification of the interface on a

server. Normal use of DCE RPC requires a name service. However, for development and

debugging purposes, the name service need not be used.

6.2 Language Compiler

The IDL compiler produces complete client and server stubs where the default call semantics

are at-most-once and the default authentication mechanism is Kerberos. The use of other

11



/*

* (c) Copyright 1990, 1991, 1992 OPEN SOFTWARE FOUNDATION, INC.

* ALL RIGHTS RESERVED

*/

/*

* OSF DCE Version 1.0, UPDATE 1.0.1

*/

/*

*/

[uuid(f9f6be80-2ba7-llc9-89fd-08002bl3d56d)

,

version(O)

,

endpoint ("ncadg_ip_udp :
[6677] " , "dds :

[19] ")]

interface binopwk

{

[idempotent] void binopwk_add

(

[in] hcindle.t h,

[in] long a,

[in] long b,

[out] long *c

);

Figure 4: Binary addition example in IDL

authentication mechanisms requires minor modifications to the client and server stubs.

6.3 Server Runtime Support

By default, DCE RPC provides concurrent execution of client calls on the server. Each

time a client call arrives at the server, the server creates a new thread for the server process

to handle the client call. A client call is queued only if there are no resources on the

server system for a new thread to be initiated. In DCE RPC, the use of threads is an

integral part of the DCE RPC implementation. With ONC RPC, threads may be used by

an RPC application whenever threads are supported on the system hosting the ONC RPC
implementation. Threads are not an integral part of ONC RPC.

12



6.4 Protocol

The protocol used for RPC calls in DCE RPC depends on which call semantics have been

specified in IDL. For idempotent semantics, a simple request /response protocol is used. For

at-most-once semantics (the default), the protocol is:

1. Client sends request packet to server.

2. Server sends response packet to client which acknowledges to the client the receipt of

the request packet by the server.

3. Client sends acknowledgement to server indicating receipt of the response packet.

This protocol, along with the use of unique identification numbers (called invoke IDs in

DCE RPC) with the request and response packets is the means by which DCE RPC supports

at-most-once call semantics. This allows DCE RPC to support at-most-once semantics over

a connectionless transport protocol such as UDP.
Like ONC RPC, DCE RPC solves the problem of different data representations on dif-

ferent systems by translating local data representations into a common data representation^

called Network Data Representation (NDR)[DCE91, Section 10.5]. In addition, the proto-

col supports the negotiation of data representations but currently, NDR is the only data

representation used.

The use of NDR is a departure from the technique used to solve the problem of different

data representations by NCS RPC from which DCE RPC is derived. With NCS RPC,
it is the sole responsibility of the server to interpret and translate between local client

data representations and local server data representations. In NCS RPC, there is no data

representation (such as NDR) which is neutral to all systems.

7 ISO RPC
ISO RPC (ISO/IEC CD 11578-1, SC 21 N 6561) is in a committee draft stage in the ISO

standard development process. The reference [IS091] used in this report is the draft for a

CD letter ballot to be returned by March 20, 1992. It consists of four parts:

1. Model - defines an “RPC Interaction Model” and an “RPC Communications Model.”

2. Interface Definition Notation (IDN) - defines the language for specifying RPC proce-

dure and data declarations.

3. Service Definition - defines the services for “a Basic RPC User Application-service-

object (ASO), Signature Application-service-element (ASE), a Basic RPC ASO, and

the Basic RPC ASO-association Object.”

4. Protocol - defines RPC protocol.

There are no commercial implementations of ISO RPC available.

^referred to as transfer syntax in DCE RPC

13



interface BINOP

begin

procedure BIN0P_ADD(

in a: integer,

in b: integer

)

returns (c ; integer)

raises ( OVERFLOW () )

end

Figure 5: Binary addition example in IDN

7.1 Language and Semantics

Unlike ONC RPC and DCE RPC, ISO RPC specifies that all RPC calls have at-most-once

call semantics. There is no mention in ISO RPC concerning how authentication is to take

place.

Like DCE RPC IDL, ISO RPC IDN supports input, output, and input/output param-

eters. Unlike ONC RPC and DCE RPC, IDN supports the declaration of exceptions, i.e.,

procedure error returns which can have their own parameters. The number of data types

supported is less than the number supported in either ONC RPC or DCE RPC. For example,

RPC Language and IDL support the aggregate data type union.

Figure 5 shows how the binary addition example might look in IDN. Note that in a real

implementation of IDN, the interface name [BINOP), the procedure name [BINOP-ADD)
and the exception name [OVERFLOW) may have conventions beyond the syntax specified

in the ISO RPC specification in the same manner as RPC Language and IDL. The example

also shows how an exception condition can be defined in IDN. In this case, the exception

condition indicates an overflow from the addition.

There are many unresolved questions in the ISO RPC specification. Annex A of the part

of the specification which defines the model (ISO/IEC CD 11578-1) contains a list of these

questions for “further study.”

7.2 Protocol

ISO RPC specifies the use of other existing or emerging ISO Application Layer protocols.

The ISO RPC protocol requires the use of Remote Operation Service Element (ROSE)
and Association Control Service Element (ACSE). It is not clear from the specification how
these protocol elements combine to support at-most-once call semantics. Since the ISO RPC
protocol is an Application Layer protocol, data representation differences between client and

server are handled by the ISO Presentation Layer protocol.

The concept that the ISO RPC protocol resides at the Application Layer is highly con-

14
/



ONC DCE ISO

commercial almost everywhere as part future product or option none

availability of network software to network software

idempotent call yes yes no

at-most-once call yes yes yes

broadcast RPC yes yes no

no-response RPC yes yes no

default no Kerberos none

authentication authentication Version 5 specified

optional Unix UID/GID, no authentication none

authentication Secure RPC and others specified

parameter direction one input. input, output. input, output.

attribute one output input/output input/output

completeness poor for client. good for both not

of stubs adequate for server client and server applicable

concurrent server default is none. always by not

call processing optionally inetd threads applicable

at-most-once by means of TCP by means of not clearly

implementation as transport layer RPC protocol specified

data representation XDR NDR ASN.l

Table 1: Comparison of ONC, DCE, and ISO RPCs

troversial. Those in favor of the RPC protocol residing at the Application Layer argue that

it is properly located because, in order to solve the problem of different data representations,

the Presentation Layer is required. This point of view is consistent with the concepts in the

ISO Seven Layer Model.

Those who argue against the RPC protocol residing at the Application Layer point out

that many RPC applications are required to be very efficient. In their opinion, this is not

possible with an RPC protocol at the Application Layer. The RPC protocol should reside in

the Session Layer with simply a common data encoding rather than a whole protocol layer

(i.e., the Presentation Layer) to provide for a common data representation.

8 Summary

Table 1 summarizes some of the important characteristics of ONC RPC, DCE RPC, and

ISO RPC discussed in the body of the report. As indicated by the table, DCE RPC has the

advantage over the others from the point of view of overall capability. DCE RPC supports

at-most-once semantics in an efficient manner and permits the optional use of idempotent

15



semantics in an efficient manner. DCE RPC provides a robust authentication mechanism

and better support for the developer of RPC applications in that the IDL compiler produces

complete stubs and the server runtime defaults to concurrent execution of calls. Even though

DCE RPC is not as widely available as ONC RPC, ONC RPC most likely comes as part of

the network software that supports DCE RPC. Consequently, ONC RPC is available at no

extra cost in almost all cases.

ONC RPC has an advantage in that it is widely available. However, it does not provide

the most efficient means possible for supporting at-most-once semantics. Moreover, the

client stub generated by the RPC Language compiler is incomplete and requires hands-on

augmentation by the developer.

ISO RPC has no current commercial implementation. Therefore, it is difficult to make

a fair comparison. The current state of the specification leaves some characteristics of ISO

RPC as yet unspecified or not completely specified. Thus, it is unlikely that a commercial

implementation will become available soon.

References

[BAD84] Nelson B. J. Birrell A. D. Implementing Remote Procedure Calls. ACM Transac-

tions on Computer Systems, 2(1), February 1984.

[DCE91] OSF DCE 1.0 Application Development Guide. Technical report. Open Software

Foundation, December 1991.

[IS091] ISO Remote Procedure Call Specification. ISO/IEC CD 11578 N6561, ISO/IEC,

November 1991.

[MS91] Chuck McManis and Vipin Samar. Solaris ONC; Design and Implementation of

Transport-Independent RPC. Solaris 2.0 White Papers, SunSoft, 1991.

[SUN90] Sun Microsystems Inc. Network Programming Guide, Revision A March 27 1990.

/

16





/


